0;*/ $_t4StyleInternal = $internal; if($_t4StyleInPreview){ $_t4StyleBaseServer = 'https://t4.gla.ac.uk'; } else { $_t4StyleBaseServer = 'http://www.gla.ac.uk'; } if($_SERVER['SERVER_NAME'] == 'udcf.gla.ac.uk') { $_t4StyleBaseServer = 'https://udcf.gla.ac.uk'; } elseif($_SERVER['SERVER_NAME'] == 'www2.gla.ac.uk') { $_t4StyleBaseServer = 'https://www2.gla.ac.uk'; } elseif(($_SERVER['SERVER_NAME'] == 'www.gla.ac.uk')&&($_SERVER['REQUEST_SCHEME'] == 'https')) { $_t4StyleBaseServer = 'https://www.gla.ac.uk'; } ?> edit in t4', $internal); ?>
Texture of bright green leaf close-up

Our Plant Science research covers topics such as plant-environment interactions, cell signalling, cell and membrane biology, protein structure and function, gene regulation, synthetic biology, systems biology and translational biology.

PhD Research Projects

Molecular mechanics of clustering and gating in plant ion channels

Outline & aim

The organisation of ion channels in eukaryotic membranes is intimately connected with their activity, but the mechanics of the connections are, in general, poorly understood. Both in animals and plant, many ion channels assemble in discrete clusters that localise within the surface of the cell membrane. The clustering of the GORK channel — responsible for potassium efflux for stomatal regulation in the model plant Arabidopsis — is intimately connected with its gating by extracellular K+. Recent work from this laboratory yielded new insights into the processes linking K+ binding within the GORK channel pore to clustering of the channel proteins.

This project will explore the physical structure of GORK that determines its self-interaction as a function of the K+ concentration with the aim of understanding its integration with the well-known mechanics of channel gating.

Techniques

The student will gain expertise in molecular biological methods, and a deep grounding in the concepts of membrane transport, cell biology and physiology. Skills training will include in-depth engagement in molecular biology, protein biochemistry and molecular genetic/protein design, single-cell imaging and fluorescence microscopy, and single-cell recording techniques of electrophysiology using heterologous expression in mammalian cell systems and in plants.

References

  • Lefoulon, et al. (2014) Plant Physiol 166, 950-75
  • Eisenach, et al. (2012) Plant J 69, 241-51
  • Dreyer & Blatt (2009) Trends Plant Sci 14, 383-90

Contact:

Michael.Blatt@glasgow.ac.uk

Photoregulation of plant hormone trafficking and signalling

Outline & aim

The phytohormone auxin (indole acetic acid) is instrumental for directing and shaping plant growth and form. Understanding how this chemical growth regulator controls plant development will have important implications for manipulating plant growth for agronomic gain. Auxin trafficking is profoundly influenced by many abiotic factors, including light. For instance, phototropin receptor kinases (phot1 and phot2) function to redirect auxin fluxes that are required to reorientate plant growth toward or away from light. The phot1-interacting protein Non-Phototropic Hypocotyl 3 (NPH3) is essential for establishing these light-driven auxin movements. However, the mode of action of NPH3 and how it functions to regulate transporter activity remains poorly understood.

This project aims to spatially dissect the site(s) of NPH3 action and how it impacts the subcellular trafficking and function of known auxin transporter proteins implicated in phototropism. Work is also focussed on characterising a newly identified NPH3 protein (NPH3-like, NPH3L) that interacts directly with phot1. Functional characterisation of NPH3, NPH3L and its homologues will provide new insights into the photoregulation of auxin trafficking and signalling associated with phototropism and other phototropin-mediated responses.

Techniques

This proposal is focused on characterising the molecular processes that integrate light and phytohormone signalling, two important agronomic processes associated with manipulating plant growth and optimising photosynthetic efficiency. Both these research areas fall squarely within the strategic priorities of Food Security, Living with Environmental Change and Crop Science. The project will provide excellent training in a range of techniques associated with molecular biology, cell biology, genetics and biochemistry. Training will also be given in key skills including teaching, project-management and science communication. Additionally, the student will have the opportunity to attend and present their research at the international photobiology meetings e.g. Gordon Research Conference in Photosensory Receptors and Signal Transduction, Galveston, Texas in 2016 (which I will chair).

References

  • CHRISTIE, J.M. (2007) Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45.
  • Sullivan, S., Thomson, C.E., Kaiserli, E. and Christie J.M. (2009) Interaction specificity of Arabidopsis 14-3-3 proteins and phototropin receptor kinases. FEBS Lett. 583, 2187-2193.
  • Christie, J.M., Richter, G., Yang, H., Sullivan, S., Thomson, C.E., Lin, J., Tiapiwatanakun, B., Ennis, M. Kaiserli, E., Lee, O.R., Adamec, J., Peer, W.A. and Murphy, A.S. (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol., 9(6): e1001076.
  • CHRISTIE, J.M. and MURPHY, A.S. (2013) Shoot phototropism in higher plants: New light through old concepts. Am. J. Bot. 100, 35-46.

Contact

John.Christie@glasgow.ac.uk

Regulation of plant nuclear architecture by light

Outline & aim

Light is essential for plant growth, development and photoprotection. One of the primary sites where light regulates major cellular processes is the nucleus. We are interested in elucidating how light stimulates the accumulation of photoreceptors and signalling components in nuclear micro-domains to regulate gene expression, chromatin remodelling and DNA damage repair. The student will investigate how nuclear compartmentalisation correlates with changes in the expression of growth promoting genes in response to light.

Techniques

A series of approaches will be used depending on the interests and background of the applicant: Gene expression analysis (qRT-PCR, ChIP), molecular cloning, protein interactions studies (Y2H, co-immunoprecipitation), protein characterisation (heterologous expression and purification), cell biology (confocal microscopy), plant genetics and plant physiology.

Contact

Eirini.Kaiserli@glasgow.ac.uk

Synthetic biology for enhancing crop water use efficiency

Outline & aim

Stomata are pores that provide for gaseous exchange across the impermeable cuticle of leaves. Stomata exert major controls on the water and photosynthetic carbon cycles of the world and can limit photosynthetic rates by 50% or more when water demand exceeds supply. Guard cells surround the stomatal pore and regulate its aperture. Our deep knowledge of guard cells – much arising from this laboratory – gives real substance to prospects for engineering stomata to improve crop yields under water-limited conditions.

This project will engage the synthetic tools of optobiology with the aim of accelerating stomatal responses to environmental drivers, especially light and water availability, both important for crop production. The project will draw on optobiological switches – notably LOV domain peptides – and will use these to control the gating of key ion channels at the guard cell membrane that are known to drive stomatal movements.

Techniques

The student will gain expertise in synthetic and molecular biological methods, and a deep grounding in the concepts of membrane transport, cell biology and physiology. Skills training will include in-depth engagement in synthetic molecular biology, protein biochemistry and molecular genetic/protein design, single-cell imaging and fluorescence microscopy and analysis. Additional training may include single-cell recording techniques in electrophysiology and membrane transport.

References

  • Wang, et al. (2014) Plant Physiol 164,1593-99
  • Lawson & Blatt (2014) Plant Physiol 164, 1556-70
  • Eisenach, et al. (2012) Plant J 69, 241-51

Contact

Michael.Blatt@glasgow.ac.uk

Overview

Plant Science at Glasgow is focused on fostering education and training in research to develop sustainable agriculture in an era of global climate change. Our research is centred on exploring how plants respond to their environment to regulate nutrition, water homeostasis, metabolism and various aspects of plant development. Our goal is to apply the knowledge gained from our research to address key issues affecting food security, crop science and technology. Plant Science at Glasgow adopts a multi-disciplinary approach within the Institute of Molecular, Cell and Systems Biology (MCSB) that covers topics such as plant-environment interactions, cell signalling, cell and membrane biology, protein structure and function, gene regulation, synthetic biology, systems biology and translational biology.

Study options

PhD programmes in Plant Science last 3-4 years with research topics being allied to ongoing research within the Institute. Projects are typically related to basic science and integrate with our existing research themes, while other projects are focused on translational aspects of our research. A variety of multi-disciplinary research approaches are applied within this research programme, including biochemistry, molecular biology, molecular genetics, biophysics, structural biology, systems biology, polyomics (genomics, transcriptomics, proteomics, metabolomics), bioinformatics and synthetic biology, as well as cellular imaging of biological functions. Specific areas of interest include:

  • Control of gene expression
  • Epigenetics and crop improvement
  • Temperature sensing
  • Plant mineral nutrition
  • Protein structure and function
  • Responses to salinity and drought
  • Light regulation of plant growth and development
  • UV-B perception and signalling
  • Nuclear organisation and function
  • Stomatal function and water use efficiency
  • Ion channel function and membrane transport
  • Plant-virus interactions and pest resistance
  • Protein engineering and application
  • Synthetic manipulation of plant responses

Our PhD programme provides excellent training in cutting edge technologies that will be applicable to career prospects in both academia and industry.  Many of our graduates become postdoctoral research associates while others go on to take up positions within industry either locally (e.g. BioOutsource) or overseas (e.g. BASF). We have strong academic connections with many international collaborators in universities and research institutes. Funds are available through the College of MVLS to allow visits to international laboratories where part of your project can be carried out. This provides an excellent opportunity for networking and increasing your scientific knowledge and skill set.

Supervisors

All our postgraduate research students are allocated a supervisor who acts as the main source of academic support and research mentoring.

You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply.

Entry requirements

Awarded or expected 1st class or high upper 2nd class BSc degree.

English Language requirements for applicants whose first language is not English.

Fees and funding

Fees

2016/17

  • £4,121 UK/EU
  • £18,900 outside EU

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Additional fees for all students:

  • Submission by a research student £440
  • Submission for a higher degree by published work £890
  • Submission of thesis after deadline lapsed £140
  • Submission by staff in receipt of staff scholarship £680
  • Research students registered as non-supervised Thesis Pending students (50% refund will be granted if the student completes thesis within the first six months of the period) £250
  • General Council fee £50
  • Depending on the nature of the research project, some students will be expected to pay a bench fee to cover additional costs. The exact amount will be provided in the offer letter.

2017/18

  • £4,195 UK/EU*
  • £19,500 outside EU

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

* We expect that tuition fees for EU students entering in 2017 will continue to be set at the same level as that for UK students.  However, future funding arrangements for EU students will be determined as part of the UK’s discussions on its future relationship.  If you are thinking of applying for 2017 entry, we would encourage you to do so in the usual way. For further information, please see the Research Councils UK statement on international collaboration and Universities UK Brexit FAQs for universities and students.

Additional fees for all students:

  • Fee for re-submission by a research student: £460
  • Submission for a higher degree by published work: £1,050
  • Submission of thesis after deadline lapsed: £250
  • Submission by staff in receipt of staff scholarship: £730
  • Research students registered as non-supervised Thesis Pending students (50% refund will be granted if the student completes thesis within the first six months of the period): £300
  • Registration/exam only fee: £150
  • General Council fee: £50

Alumni discount

A 10% discount is available to University of Glasgow alumni. This includes graduates and those who have completed a Junior Year Abroad, Exchange programme or International Summer School at the University of Glasgow. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.

 

Funding

Support

The College of Medical, Veterinary and Life Sciences Graduate School provides a vibrant, supportive and stimulating environment for all our postgraduate students. We aim to provide excellent support for our postgraduates through dedicated postgraduate convenors, highly trained supervisors and pastoral support for each student.
 
Our over-arching aim is to provide a research training environment that includes:

  • provision of excellent facilities and cutting edge techniques
  • training in essential research and generic skills
  • excellence in supervision and mentoring
  • interactive discussion groups and seminars
  • an atmosphere that fosters critical cultural policy and research analysis
  • synergy between research groups and areas
  • extensive multidisciplinary and collaborative research
  • extensive external collaborations both within and beyond the UK 
  • a robust generic skills programme including opportunities in social and commercial training

Resources

We are equipped for:

  • protein biochemistry
  • molecular biology
  • spectroscopy and microscopy
  • growth facilities with narrow and broad spectrum illumination
  • single-cell and whole-plant imaging
  • electrophysiology and in vivo measurements of ion concentrations
  • whole-plant physiology
  • plus glasshouses, growth rooms, plant, mammalian and insect cell culture facilities.

We offer a wide range of cutting-edge research facilities including cell imaging and biophysical techniques with NMR. Our protein characterization facility includes tate of the art machinery for analysing protein structure and interactions. In addition, we offer mass spectrometry, next generation sequencing and other Polyomic approaches. 

Researcher profiles EOD; $furtherInfoSectionsLength = strlen($furtherInfoSections); ?>
">
0){ ?>